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We point out that Yang's and Einstein's gravitational equations can be obtained 
from a geometric approach of Yang-Mills gauge theory in a sourceless case, 
under a decomposition of the Poincar6 algebra. Otherwise, Einstein's equations 
cannot be derived from a Yang-Mills gauge equation when sources are inserted 
in the rotational sector of that algebra. A gauge Lagrangian structure is also 
discussed. 

1. I N T R O D U C T I O N  

Analogies between the Yang-Mills (YM) theory at the classical level 
and general relativity (GR), under their common basic geometrical setting, 
have long been studied. Indeed, if we look for a spacetime gauge model for 
gravitation, it is necessary to investigate the features of spacetime gauge-like 
characteristics: on any differentiable manifold there is a bundle of affine 
frames, naturally defined, whose structural group is the affine linear group 
AL(n, R) = GL(n, R) | Tn. For the spacetime case, in particular, the require- 
ment of Lorentz frames reduces AL(n, R) to the Poincar6 group P4 = S0(3, 1) 

T4. Gauge theories for the Poincar6 and de Sitter groups have been exten- 
sively studied as alternatives theories for gravitation. 

The local geometrical structure of GR as a gauge theory for the de Sitter 
group S0(3, 2) has already been analyzed in detail (Stelle and West, 1980). 
To reproduce the structure of Einstein-Cartan theory the S0(3, 2) gauge 
symmetry is spontaneously broken down to the Lorentz group. In such an 
approach the gravitational vierbein and spin connections can be derived from 
their original S0(3, 2) gauge fields by passing over to a set of nonlinearly 
transforming fields, through a redefinition involving a Goldstone field. More- 
over, the original S0(3, 2) gauge fields generate pseudotranslations and 
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rotations in the so-called internal anti-de Sitter space under a kind of parallel 
transport. Norris et al. (1980) proposed an underlying fiber bundle structure 
for gauge theories of gravitation and an extension to an affine structure group. 
They pointed out that the decomposition of a generalized affine connection 
contains more than curvature and torsion. This also should affect the field 
equations. Moreover, they considered an extension of the linear frame bundle 
to the affine frame bundle and established that the torsion is just one part of 
the total curvature of a generalized affine connection. 

Within the framework of differential geometry Mielke (1981, 1986) 
considered a Yang parallel displacement gauge theory related to pure gravita- 
tional fields. He showed that, in a four-dimensional Riemannian manifold, 
double self-dual solutions obey Einstein's vacuum equation with a cosmologi- 
cal term, whereas the double anti-self-dual configurations satisfy the Raynich 
conditions of geometrodynamics. Moreover, under duality conditions the 
Stephenson-Kilmister-Yang theory not only embraces Einstein's sourceless 
equations R~ = 0, but also Nordstrom's vacuum theory. We recall that the 
Lagrangian structure of the Poincar6 gauge field equations for gravitation, 
and their Einsteinian content, under duality conditions is already known 
(Aldrovandi and Stedile, 1984). However, there has been much criticism 
concerning a YM gravitational model for the Poincar6 group. A main point 
frequently made is that GR does not have the entire Poincar6 local symmetry 
of spacetime and also, since the Poincar4 group is not semisimple, we cannot 
build up a Lagrangian theory for this group. Besides, the essential fact still 
remains: the Einstein-Hilbert Lagrangian is not of the YM type, and the 
dynamical aspects of both theories are qualitatively different. 

2. FIELD EQUATIONS 

We start by considering a gauge model in a principal bundle P = (M, G), 
where M is the base-manifold (Minkowski spacetime) and G = S0(3, 1)) O T4 
is the Poincar6 group. Here the %algebra of G is a vector space, given by 
the direct sum ~ = fit �9 ~-, where ~ and ~', are respectively, the rotational 
and translational sectors of ~. In a basis with generators [J~,b, Io] an affine 
connection F on the P-bundle decomposes into F = F + S, where F = 
Jb,,Fab~ clx~ is an ~t-valued connection and S = IchCx dx ~ is the ~--valued solder 
form. Here both forms are written in a coordinate basis {dx ~} in spacetime. 

Such a decomposition affects the curvature of F 

= F + T (1) 

where F and T are the curvature and the torsion of F, respectively: 

F = d F + F ^ F ,  T = d S + F ^ S + S ^ F  (2) 
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The above decomposition of the Lie algebra c~ gives rise to the Bianchi 
identities 

dE + [F, F] = 0, dT + [F, T] + [S, F] = 0 (3) 

Yang-Mills equations are here written as a breaking of dual symmetry of 
Bianchi identities for any group, once its structure constants are known. Also, 
if sources are to be inserted in such equations, these sources should be the 
Noether current densities, whose "charges" are the generators of the symmetry 
group. At first sight, they could be the density of the relativistic angular 
momentum A and the stress-energy O: 

d ' F +  [F,*F] = * A ,  d*  T +  [F,*T] + [S,*F] = * O  (4) 

Here we notice that the torsion is always present in the bundle of frames, 
and its vanishing should lead to GR. Also, the last equation points out a 
propagation for the torsion field, and since it is a dynamical equation, it is 
different from Einstein-Cartan equation (Hehl, 1979). 

To obtain the Riemannian limit of equations (4), we notice that these 
equations may be projected onto the base manifold by means of the four- 
legs h~,~. Moreover, locally the base manifold is endowed with a Riemannian 
structure when we consider a Levi-Civi~ connection F: 

d*  F + [F, *F] = *A, [S, *F] = *O 

which lead respectively to 

OX~X q- Fa xFCb~ h -- FCb k~cc~X = Aab~ 

Sb~P0~ x = O ~  

(5) 

(6) 

(7) 

where the tilde stands for the dual. In reality F can be defined in many 
different ways, with S being a horizontal form, too, of a more general type. 
The solder form is particularly convenient because, when written in a frame 
given by the four-leg field h~, its components are those of the dual basis 
(see, for instance, Kobayashi and Nomizu, 1963). In the dual basis the above 
equations become, respectively, in a Riemannian spacetime 

V X / ~ x  = A ' ~ ,  /~%~ = O ~  (8) 

Since 

/~•  = 1 ~ R ~ o C 0 x ~  (9) 
4 

then, by lowering and raising suffixes and contracting with ot = k, we get 

1 
/ ~  = ~ ~oR'%~ (10) 
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and using the property 

e~'~ae,~Tp = - 2 ( 8 ~  - 8~8~ a) (11) 

we are led to the components of Einstein's tensor 

1 a~R + RI3,~ = G6~ (12) 

Hence, by contraction (a = Ix), the first of equations (8) leads to 

VXG~x = A~ (13) 

which violates the conservation law VXGax = 0, since A ~  ~ 0 in general. 
Thus, we conclude that A cannot be inserted into the first of equations (5) 
as a source for the rotational sector Jr. However, if we consider O~ = 
KT~, where K is a constant, we see that the second of equations (8) becomes 
Einstein's equation 

1 8~R = KT~ (14) g a 0 ,  - 

if we choose K as Einstein's constant. This means that Einstein's equation 
emerges from a break of dual symmetry of Bianchi's identity for the transla- 
tional sector 3 of the ~-algebra. However, such a break cannot be taken for 
the rotational sector in the presence of a source, otherwise the conservation 
of Einstein's tensor is not satisfied. 

A YM gauge Lagrangian is given in the form 

= F ^ *F (15) 

which can be written only for semisimple groups. In the Riemannian case 
this Lagrangian can be written for the Lorentz sector of the Poincar6 group as 

= R ^ *R (16) 

and it leads to Yang's equation of gravitation (Yang, 1974) 

R~;• - R~x;~ = 0 (17) 

This equation is only valid in the sourceless case and its physical significance 
has been studied exhaustively (see, for example, Thompson, 1975). The main 
point is that it contains solutions that do not lead to the correct relativistic 
perihelion shift of planets. From the geometrical point of view, the connection 
F can be interpreted as the gau_~e potential of Yang's theory of gravitation. 

Concerning to the 2-form F pointed out before, we recall that in a four- 
dimensional spacetime manifold if we take the spacetime metric g~ ,  its 
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conformal transformation can be written in the form ~ = f(x)g~,. Since 
g~g~• = ~ r 2 1 5  = B~ x, we thus have 

1 
~ = f g~X (18) 

In the diagonalized form, I d e t ( ~ )  I = f4  det(g~), hence we obtain for the 
spacetime components of *F 

= # g~'~g"~F,~%,,x,~ dx ~ ^ d ~  (19) 

l 

and for *F 

(f4g)U2 gr gV~ o 
P -- 2 f f F~ew~• dx x A d ~  (20) 

Since F ~  = F ~ ,  because these components do not depend on spacetime 
metric, we conclude from equations (19) and (20) that P = F, which states 
the conformal invariance of *F. This means that the Lagrangian ~ = F ^ 
*ff is also conformally invariant, and the same is true for the YM equations. 
Moreover, we recall that Einstein-Hilbert Lagrangian of GR, ~ = g~R~,  
is not of the YM type, which reinforces the fact that GR is not conformally 
invariant, as is already known (see, for instance, Fronsdal, 1984), and the 
curvature tensor does not behave as a gauge field of a YM gauge theory. 

3. C O N C L U D I N G  R E M A R K S  

The scenario developed here points out that Einstein's equations can 
emerge from a break of dual symmetry of Bianchi's identities for torsion. 
Such a break cannot be taken for curvature, otherwise the conservation of 
Einstein's tensor is not satisfied. Moreover, the approach proposed here yields 
a dynamical equation for the torsion field in the case of a general connection. 
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